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IMPROVING THE TOOLS OF SYMBOLIC LEARNING

Yves Kodratoff
Equipe Infizence et Apprenossage

B*Amezn 490, Laboratoire de Recherche en Informatique
Univesitd Paris-Sud. UA-410 du CNRS,

F - 91405 Orsay France

RESUME

Dam Ia preniae partie de cet article. nous donnons quelques consdquences du choix d'une difiition
de la nown de Ginira/isation. Nou discutons des relations entre difinutions fonddes sur la dduction et
ceiles foai"e sur la subsunution.
Dam une seconde pa e. nous montrofs comment une approche symbolique peut zendre compe an

mom particilement. du bruit pidsem darn toute dome reelle. Nous discutons de cee approche pour
I'Analyse des Scrns, I'acquisinon de rngles et de strategies de connrle. Fnalement. was xprsemons
notr idde d' Espae des Versions Polymorphique.

SUNMARY

" In its =t part. this paper presents some consequences of the choice of the definition of Generalizaon. r
It discusses the definitions based on deduction. versus those based on substitution.
In its second par. it shows bow symbolic computanos ae also able to take into account. at least pan.
ly, the noise most real-life dam show. It discusses symbolic approaches to noise handling in Scene
Analys, rule learning, stategy learmin and, finally, of the idea of polymorpnic Version Space,

"ey-words -

4 ;teal iz ation. Generalization in an Equational Theory. Learning Strategies. Polymorphy.
Resistance to Noise, Rule Learning. Scene AnalyssVersion Space. (r 0, k~n
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INTRODUCTION

In this paper. we shall emphasize two aspects of this pest of symbolic Machine Learning which deals
with learning from sets of several examples, and the aim of which is "moving from more specific
descriptions to more general decripons" [Langley 1986] ( called here generalization).

One is relative to the practacal consequences of a theoretical puzzle.
Among the important techniques used. in ML axe techniques of generalization, and specialists in ML

build up systems that attempt to provide descriptors ( i.e.. atomic formulas ) that have the best degree
of generalization. For ismtance, the Version Space Mitcheil 1982] paradigm is a method that helps to
find the exact generalization state in which a desciptor must be used in order to optimize the problem
solving efciency of operators making use of this descriptor.

It is then somewhat surprising to see that Classical Logics do not define the generalization state of an
abomic formula. The only existing logical tool is relative to disjuncve formulas and is called subsump-

on. while subsnunon defines the relative generality of terms ( Le.. formal functional exressious that
are not evaluated ).

We shall attempt to clarify this situation, up to the point where some of the practical consequences of
our theoretical choices can be seen.
In section 1, we study definitions of the generalization of implications and conunctrve fomulas. and

their differences, we study also the practical consequences of choosing Modus Ponens instead of the
•---- - -- - - Generalizraon Principle as an inference rule. An other, related, topic of section I is the discussn of

the use of the properties of the descriptions one wants to learn from.

The other aspect is : how far symbolic methods, as opposed to numeric ones, must be of use?
In most of the present published works, as soon as some wise or some polymorphy ( Le.. when con-

cepts have intersecting sets of instances ) has to be taken into account, the authors rush upon numencaL
representations they claim being the only way to cope with those problems. We have chosen the oppo-
site approach. which is to suck as far as possible to symbolic repreentations. even if it may first eem
absurdly too far. For instance, we would represent polymorphy by putting upper and lower bounds to
the propertes of concept rather than assigning to a given instance so much chances to belong to one
concept and so much to belong to an other one.
Section 2 will be devoted to the study of symbolic handling of noise and polymorplay. with, for in-

stance, a presentation of "Polymorpic Verson Spaces" which illustrates well how seemingly purely
symbolic techniques can be also applied in a wider context.

Our approach aims at improving the provability of each learning steps. and we believe that provabdiiry
is a necessary ( if not sufficient ) step for explicablity. This last statement is well llustrated by EBG
jMitcheLl & al. 19861 where explanations am derived from proofs. In our opinion. this point is of much
imporance. this s why we shall come back to it in conclusion.

9.

i. - DIFFERENT DEFINITIONS OF GENERAUIZATION

1.1 - Intaitive Definition of Generalization

Thete exists one demtiton which is agreed upon by all authors. the most innuive oe. Ve give it
under a simplified form where the formulas depend on one variable only. When there ae several van-

Lp
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ables. one has to take into account the fact that each variable is relative to a given object. Object
oriented geaerali~anoo is a rather new topic (Manago 19861. we will not go into it becaue we would
like to suck to weil-known concepts io this section.

Let P(x) and Q(y) be two formulas.

Let us note by (Pr~uE) the set of the irtances of x such t P(x) - TRUE. and sim y for Q.

(Pr lsw ( = x / P(x) - TRUEI
(Qme}E) { y /Q(y) - TRUE}

Then one says that P(x) is more general than Q(y) iff IPTRVE I {QTRaU.

This defin, noa is the one actually used when one wants to show tiat. say. P(x) is not more general .0'
than Q(y). In that case it is enough to exhibit an instance of x such that P(x) is FALSE and Q(y) is
TRUE.

The probien. bowever, is to be able to compute a gerralizaton from its instances, and the above
definition gives no way to achieve this goaL This is wiy alternate definitions, leading to a generaliza-

woo algomt, have been developed.

1.. - Vere 's definition of generalization

Let us firt consider a conjuncuon of descriptors. A formula has therefore the forn
A -A,&.-&A.

where each A, is a descriptor.
Let {AI be called the set assocated to A. defined by

(A I - (A,. .,A. I
Then A is more genral than B iff there is

.

- 3nexpression B' such that (B') r{B( ,
a substiuon a such tha A = '.,

Otherwise staed. aA is equal to a subpart of B. up to a varable tenming.

For disjunctios of conjunctons, this definition becomes : Let G. g, v v g.., Gb bI V V

fi,.. then G. is more general than Gb iff V/j 3i such that g. is more general than g,.

The main drawback of this definition is that it gives no control on the way conjuncts are dropped dir- ,,'
ing the generalization process.

1.3 -Existenidal venus Universal quantification

The state of quannficanou of the variables introduced during the generalization process depends on
I - the form of the expressions given as example
2 - the use of the generalized expressioa. .J.

The form of the expressions given as example depends very much on the way the information is
represented.

Consuier the English sentence "That particular crow, named Jack. is black". p
It can be interpreted either as an implication, or as a conjunction. Disputing on which is the best
would be outside of the scope of this paper.

-I



In the first case. its first order logic representation will be
CROW(JACK) zw BLACK(JACK),

in tie second case. it will be :
CROW(JACK) & BLACK(JACK).

When one is learning from implications ( or. more generally, m theorems ) the Latuitive

From he knowledge~CROW{JACK} =a- BLACK(JACK)
CROW(JOCK) =P BLACK{JOCK).

one is tempted to infer
Vx (CROW(x) = BLACK(.)]

because it gives a good representation of the sentence "All crows are blackr.

When on. is Wearning from conjunctions. it is counter-intiive to iroduce universal quannfiers

From the knowledge
CROW(JACK) & BLACKJACK)

CR0 W(JOCX) & BLACK(JOC).
one is not tempted to infer CROW( ) & BLAK O .•"~ ' .. " x [CRO W(.r) & BLACKffr)J

because it represents the sentence "All objects are black crows" which is nowhere in dhe examples.
Even more convincingly, one cannot learn that

.. ... ViVy {BLACTxj & WHrTEIy)/

fromf
BLACK(CROW) & W.IMTTSWAN)
BLACKUAY) & WHITE(DOVE)

since the examples contain no contradiction while *x~y [BLACKfx) & WHITE(y)] does.

Nevertheless. it may seem a bit awckward to "iner" from them
lay [BLACK(x) & WHITEIyu]

since this existental theorem is nothing but a mere logical deduction from either example.

Suppose that you st from a reiation R(A. B) among insmaces. It is trivial to understand that, most
often. the relaoa 4x''y CR(x. y)] is wrong. One has to find a relation of the type

Yx V~y CP(x) & Q(y) -R(X. Y) I
where P and Q describe those variables for which R is TRUE, but in general one has no way to find P

and Q.
That explains why some authors define

P(A) generalizes nto 3x P(x) iff 3x [P(A) - P(x)]

Since this implication is a tautology. this detinition is also very much disputable. The idea of genera-
zation conveys some increase in the mlformanon content of the generalized fonmla. He., on the con-
tary, generalization would take place, and seemingly decrease the information cosmnt of the general-
ized formula. This last point will be detailed in section 1.3.2.3 below.

-Let us now see bow these problems are handled in each particular case.

1.3.1 - Theorem Learning

When one is learning from example theorems, one will introduce universally quantified variables. Thi

gives rise to two different difficulties. Both of them are extremely deep problems and their answer be-
S long to long term researctn. Nevertheless, we shall now describe them briefly.

S.
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Firstly. there exist indeed theorems that contain existential quantifiers, and the recognition of this ex-
istennal quantifier is very difficult problem which amounts to function synthesis.

Secondly, the examples usually do not specify what is the domain of validity of the theorem ( i.e., one
learns usually faLse theorems from examples ) and the determination of this domain amounts to predi-
cate synthesis.

1-3.L1 -Inventing Skolem Functios

When some variables are existentially quarnfied. there is always a hidden function which will be ex-
tremely difficult to put into evidence.

Suppose that one is learning from set of examples like : 0 * I.- 1.0 * 2 - 2. 1 0 - l.... 4 1
-2. etc .... where + is an unknown symbol. It would be wrong to infer formulae all the variables of
wich are universay quanusied like : '4x~y1V: [x , y :1

Let us now suppose that it has been possible, say by using suitable counter-exvamples, to guess that one
possible formula is *4x vk [x 4 y - :J.
Obviously. this last theorem, although true. does not solve the learning problem implicitly stated by t

above sequence of examples : "invent a definiton of a ftincnon + that fits with this set of input-ousput
examples".

When a theorem comains existential quai r the first goal is, of course, to recognize which are the
.. - variables under their scope. In general. as the example shows, this is not the ulmate goal which is

r-athe : "remove those existenially quantfied vaaables by synthesiig a suitable skolem function that
fits with the examples".

Instead of x'y [x y - :1. one rather wants to find af ncon f such that V y [x - y -x. .y)].
and f realiies the operation ~

Several methodologies that propose an approach to the solution of this problem can be found in [Bier-
mann & al. 19841. Recently, an original approach has been developed and implemented in our group
[Franova 1985. 19861.

L3.L2 -Finding Domain Defijitoas

Let us suppose now that we ar in the simpler case where all quantifications are universal ones. It
does not mean that the theorem is true in all possible itmerpretations : one must aLso find the domain of
definition of the vanables.

Suppose that the system is to learn rules concerning the economic relanonships between countries.
For example, it will be told that :
If France is a buyer of video recorder, and Japan produces them, then France is a potential buyer of

video recorder from Japan.
A formal way of representing this sentence is
E : NEEDS(FRANCE. VIDEOS) & PRODUCES(JAPAN. VIDEOS) --> POSSBUY(FRANCE. VIDEOS.

JAPAN).

Assume that we also have the second erample:
E, NEEDS(BELGIUM, COMPUTERS) & PRODUCES(USA. COMPUTERS) ->

POSSBUY(BELGITM, COMPUTERS. USA).

It is then easy to find the following generali:aton
G: '4xy 4u NEEDS(x. u) & PRODUCES(y, u) -> POSSBUY(x. u. y).
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This generali:ation is still not correct since, for instance, it would allow x and u to be instantiated by
the same value.

-: In this simple case, suppose that the following taxonomies are available:
COUNTRIF.S

FRANCE BELGIUM USA JAPAN

PRODUCER-GOODS

COMPUTERS VIDEOS

'~ ... ' These hierarchies describe the possible domains of the variables, this information can be introduced as
a condition to the application of the rule :

~I'4xVy'4u [ IF COUNTRY(x) & COUNTRY(y) & PRODUCER-GOODS(u)
THEN { NEEDS(x. u) & PRODUCES(y, u) --> POSSBUY(x. u. y) I I.

A greater refinemem is of course possible when information is available, more detailed than the two
above taxonomies [Kodroff 19851, Dodratoff 1986aj.

13.2 - Concept Learning or Different Ways to Use a Recognition Function

. . In this section, let us assume that we do not learn mins or theorems, but conjuncts of atoms.
T1his lcind of learning aims at obtaining a formnula. called recognition function. that charactenzes the

macroworld to which the examples belong.

When quanufiers are introduced, the recognition process will work by using a deduction principle.
tn our example, we shall use refutaon and write the recognition as the deduction in a PROLOG pro-

gram, and use Edinburgh notation I(ockmn & Mellish 1981]

Suppose that w -start from
El : "This scene contains KCOKO which is a white swan",
E, : "This scene contains X7KI which is a white swan".

These examples are interpreted as a description of some scene "This scene".
;.. ,- They are then given the form :

S'. " " '" E,': SWAN(KOKO) & WHITEKOKO)
E : SWAN(WKIU) & WHITE(IKIV).

Obviously, one arms here at recognizing scenes that contain a white swan.
This example has been chosen on purpose to be opposed to the "black crow" one since all swans are

nor white.

1.3-.1 - Umversal quantificaton

All variables are universally quanhfied. the recogntion "function" has therefore the form : lix ?(x). .-
It will be used as a recogmion tuncton of a scene, say S1, as defined: 5,

One says that
\'ix P(s) recognizes S, when one can prove \x P(x) =a S1.

Using refutation for the proof of Y1x P(x) =m S1 amounts to prove that its negation leads to a conradic-
tion. ie. that

\4x P(x) & -s,

%'
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leads to a contradiction.

El' and E," will generafize to
ax P(x) , "lx [SWAN(x) & WHrTE(x)J

which will be used to recogni:e a scene made of a white swan.

Suppose tha! we want to check that
S, - [SWAINWACKO) & WHITE(JACKO)]

is recognm.ed.
One has !o prove that

SWAN(x)
WHfTZIx)

. SWANIJACKO). WHITEFJACKO)
leads to a contradiction. which is of course the case.

- - ... Therefore, the scene is recognied by this recognition fiucrton.

S. .This kand of generalization has the property ( in some cases it is a drawback, in some others it may be
an advantage ) that it will fail to recopmnz a scene with additional details.

Consider a scene with a white swan and a Renault car, one will have to find a conradicton in the set:
SWAN(x)
WHITE(x)

SWAN(JACKO), WHITE(JACKO), CAR(RENAULT

and this will not be possible.

In conduson. one must use umversally quantified vaiables when one looks for a recognition function
that recogizs whole scenes. One must not use tem when the recognition function is supposed to

_ - .--- recogma sub-panm of a scene.

.1..2 - Existential quantfication

AU variables ar existenmtially quannfied. the recognion "fnction" has theafore the form ax P(x).
*It will be used as a recognition fauction of a scene, say S1, as defited:

One says that
3x Nil) recognizes S, when S, I-s 3zi),

Le.. when one can deduce 3x Px) from Si.

Using refutanon for the proof of S I- 3x P(x) amounts to prove that deducing the negation of 3x P(x)
-- . from St leads to a contradiction. i.e. that

. ....... .. : _ $ & -., ax P~x) :
17: ~~leads to a contradiction. S XPx

El' and E," will generalise to
-3x PfxJ , x [SWANx) & WHfT(xI.

therefore one has.
-9 x P'x) - "lx --P(x) - ',x -(SWANJx) & WHI-If x ,j

Suppose that we want to check that

S, - [SWAN(JACKO) & WHrTE(JACKO)I

is recogm'.ed.

One has to prove that
SWANUACKOI
WHfI(JACKO)

:- SWAN(x. WHITE(x)

leads to a contradicnon. which is of course the case.
Therefore, the scene is recognized by this recogniton funcnon.
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1.3.2.3 - Conclusion

Existential quantification might have been felt as counter-intuitive because "nothing is leared" from it.
This is not tre for the folowing reasons.

- The existentiai theorem ax P(x) learned from a set of examples (Ej' .... E.) must be deducible from
each E,. It therefore catches. as it should be. some of the common features of the examples.
It will recognize a scene by its sub-parts.

Consider again a scene with a white swan and a Renault car, one will have to find now a contradic-
tion in the set :

SWAN(JACAV)
WHITE(JACKO)
CAR(REVAULT:

SWAN(x). WHITE(x)
and presence of a renazdt car is no longer harwmfid.
- This definition is actually very near to the inttive one. In particular. it contains Michaiski's general-

ization rules [NMichasl & Stepp 19831, [Micbalski 19841. For instance, the example of section 13.22
shows how it comais the "dropping condition" rule.

This approach has been used in fodxatoff 19851 for the specific ce of counter-examples. It has
been generalized by Nicolas (Nicolas 1986a. 1986b] who uses a theorem prover in order to perform in-
ductive learing, which may seem surpring at first sight.

We have developed an other way to define generalization. by extending the classical definition of term
generilizado. as seen W th next mSeon.

In order to prove the necessity of introducing these new concepts. let us consider the following
counter-example to the methods issued from Modus Ponens. as presented in secuos 1.3.1 and 1.3.2.

1.3.3 - A Counter-etample

Let us now give a "counter-example" to deductive definition, in that sense that a best generalization is F

not found by it.

L3.3.1 - A definition of '"best generalization" issued from Modus Pocens

i- .-..:_: .There is an obvious way to define a best generalization when one quantifies existentially the variables.
The best generalization is the one which is the "nearest" to all the examples. but contains the informa-
tion they have u common.
Let (E} be a set of examples, and (GI be a set of possible generalizations. i.e.. '4i. one must be able

to prove that E. I- Gt, for each of the Gk's.
Since one infers the generalizattons from the examples, it is obvious that one must defin the best gen.

eralizadoa among the Gj's by being the mosy specific one, i.e. the one. if it exists, from which all oth-
ers can be inferred.

1.3..1 - The counter-example

Suppose that one starts from the two examples "'S

El ON(A. 8) & NEAR(B. C)
, OND. E)

with the theorems

'4x vy [ON(x. y- Y) VEAR(x. Y)J
"4x '4y [NEAR(x. Y) -* NEARly..r)/

V,~-'.'/-.%'-':?::---,::,- :-,-.7..-€ ::--'.w .' -,' '- /--. --, - :.---.-;:-- %' .:.2.. %..:_% 7'.:.'::-'.".% "%d:
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Using these theorems. one can show that the two following Potential Generalizations
G, U y [ONV(x. y)/
GI ary =Iz [ON(x. y) & NEAA(Y.:l

are equi valent relative to our definiton. since G, 4- G2.

Nevertheless. the associated generalizations obtained by substtution techniques. as seen below, are:

A :ONUx. Y)
f2 : ONfx. y) & .VEAR(y.:z)

They are not equivalent since, using the theorems, one can show that f, is equivalent ZO
f,:ONt'x. Y) & NEA~y. x).

I: is clearly ( from definition 13j.2 below )more general thtan f, since the substitution a~ (x *-x. y
-y, ~x) is such that af2-fl'.

L4 - Term generalization

1.4.1 - Trm

Let V be a countable set of variables and F a family of ftincutins indexed by the natiral numbjers.
When a function f belongs to F., one says that the ashty of f is n. The set FO of funrions of amiy Zero

* is; called the set of th constns

Tbe set of terms on V and T, is defined by
(j) v V isaterm

-*(d) flt....t4) is a term iff f F and it . .. , are tems.

*11

Inuitively, the set of terms Ls a set of expressions built with functions of some anty, constants and
* variables.

1.4.2- Genewralizaton hoa

The term t1 is more general than the term tb, denoted by t,.! t, tiE there exists a substituti ar,=t,.
This definition does not take into account the properties of the functions. One describes these proper-

ties by a "theory" F and one defne a generalizaton modulo this theory.

1.43 - e - generalization

Let e be a set of axioms wich express the propertes of the fux~raons.
When one needs to use these axioms in order to tecognize the equality of two terms. one says that they
are e-equal
For rnstance, the two terms t, i 3) aind t, - (3 + 2) are not considered as equar but as :

equal" because one needs ,o use the axiom of commutarvuty
'fw'xy (X + Y) - (y E xyj

in order to recognie that r, =e th.

This dear ition may seem counter- mitive but is it cssary to single out the use of axioms in the
context of an automatic generaton of generalizations because their use may lead to infinit computatonloops ( using the axion toi one d section and then it the other one . This kind of problems have been

very much studied, see fr instance [Stckel 19811, [Hsiang 19821.

Let =, denote V-equality.

• .. ~

Ah term t1 is more general than th term t dtenthoty ,< _ iff ther exsts an sust1=t- noa a

T's elmio de at ak nt acun teprpeeao te ucton.On dsciestts poIr
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such that (tt'=t2'.

Depending on .. it may be that the above definition of c-generlizaton is not consistet wIth its ui-
plicit futie use for definition an ( at least partial ) order. Using some of the propertmes one may find ti'
and t,' such that tt=mt1' and tz=L2" and there is a a such that c1tt'=t1'.
Nevertheless, it may well also be that, using other propertes. one can fin t" and t2' such that r1,i("

and t.4", and there eits oz such that c4"=-l" even when t1 t'*2" [Kodratoff & Ganascia 1986].

Since we want to use the properties of the functions, and further define the generality of formulas
(therefore using the properties of our connectors) it is necessary to find a detininon of e - generalization
that avoids this difficulty.

A.... 1.4.4 - Example of e - generalization (where atomic formulas are trewed like terms)

- ..Let us suppose that we work in a world of objects which have a color and the the following knowledge
is available

Y'x gy COLOR(y, x)
It states that each object x has a color named y. In addition. RED is a kind of COLOR and this infor-

mation is supposed to be also known. This knowledge allows us to transform any atomic formula like
RED(x) into an instance of more general atomic formula COLOR(RED, x).
Let us compare the generality of the concept "red square" C, and "square" C,.

-- ~~C =. ~.C SQUARE(x) & RED(x)

C2 = SQUARE(x)

Applying the above theorem. one kiows that for any x of C2 , it has an unknown color, say y. There-
fore C, is equivalent to C,' = SQUARE(x) & COLOR(y, x). Based on the fact that RED is more paruc-
ular than COLOR, one can find Cl'=rC l, Ci' = SQUARE(x) & COLOR(RED. x). Now. the usual tem.
definition of generality can be applied since aC,'=( ' with cy = (y - RED). Therefore C, is more gen-
eral than C, in the theory which contains the above information.

1.5 -Definition of Formula Generalizatioa modulo a theory

Let E, and E. be two formulas and E an equational theory.

, ,1.5.1 - Generalized formula
"- t-

We say that formula E, is a generalization of formula E, if Condition 1 is flfilled.

Condition I : there exists El' such that E1' =, Et and there is a. such that a El' =, E.

This condition states that there emsts El', equivalent to E, and that El', considered as a term. is more
general than E, considered as a term.
The next definition gives an other condition which insures that formula generality is a partial orderng.

1.5.2 - Generality relation between two formulas.

We shall say that Et is more general than E when Condiuon L and Condition 2 are fuifhuled. Condi. '"

tion I is as above andt

Condition 2: For all E,' such that E,' =E , if there exists a,, such that i>El. =* Ek, then E,' =t E.

"This second condition states that the first condition can actually be used for ordering the formulas.

'p

0 N
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It says that if there is a F' which is equivalent to E, and which is mor general( as a term )than El.
then all three Et, Ei. E2' must be equivalent.

Some theoretical consequences of condition 2 have been studied in (Kodratoff & Ganascia 19861 under
the name of i-implicaaon.

We shall rather explain how one can make an algonthm out of definition 1.5.2.
One needs to find out the u-sformed E, and E,, .aled E( and E,' in the above definition. We have

called this work Sructural Matching [Kodratoff 1983].

1.6 -Sbuctural Matching ( SM)

S-1.6.1 -linition

Two formuLas structually match if they are identical except for the constans wd the variables that uk-
an their predicates.

More formally:
Let E, and E. be two formulas,.

El structurally matdies E. iff rhee exists a C and there exist and a, such that
I. oC-E and c=E,.
2- a, and a, never substitute 2 variabe by a fomula or a funcioa.

; .It must be understood that SM may be diicult up to undecidable. Nevertheless. in most cases. one can
use the infonnraon coming from the other examples. in ortkr to know bow o orzetaw the proofs
necessary to the application of this definition.

1.62 -SMling two formulas

SM may well fail whereas the effects of the attempt to put mm SM may still be %nstg.

We say that two formula have been SMized when every po sble propery has been used i order to
put them into SM.
When the SM is a success, then SMizing is identcal to putting into SM.
When the SM is a failure, SNfiing keeps the best possible result in the direction of matching formulas.

1.6.3 - A simple example of ( successful ) Structural Matching

Consider the two following examples.

A ZL4

Using his intwinon, the reader may notice that he can find two different generalizatons from these
examples.
He sees that either

there are two different object touching each other, and a small polygon

4.

44
44
4.

*1.
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there are two different objecrs touching each other, one of them is a square.

Both generalizations are true and there is no reason why one of them should be chosen rather than the
other. We shil now see da: one of the interesting features of SM is that it keeps all the available
information, and therefore constructs a formula containing both the above two "concepts".

The examples can be described by the following formulas

E, - SQUARE(A & CIRCLE(B) & OW(A, B) & SMALL(A) & BIG( )
F,. - TRIANGLE(C) & SQUARE(D) & TOUCH(C, D) & SMALI-C) & BIG(D)

Let us suppose that the folowing hierarchy is provided to the xyTtem.

FORM

CONVEX

POLYGON EZliPSOID6\..-
SQUARE TPJANGLE... CrRt

together with the theorems

"x 'y (ON(x. yj - TOUCH(x. y
'Vx Vy [TOUCH(x. y) ,** TOUCHly. x)j

This taxonomy and the theorems lepesent our semanncal knowledge about the rnicro-world i which
learning is taking place. L

The SM of E, and E, proceeds by tramforming them into equivalent formulas El' and £-', such that
E,' is equivalent to E,, and E,' is equrvalet to F, in this micro-world ( i.e., taking into account its
semanucs ). -
When the process is completed. El' and E" are made of two parts.
One is a vanabilized version of El and Eq. It is called the body of me SMized formulas. When SM

succeeds, the bodies of El" and E,' are idenucaL.
The other part. called the bindings ( of the variables ). gives all the conditions necessary for the body

of each E£ to be identical to the corresponding E,.

The algonthm that comructs El' and E2' is explained in 'Kodratoff 1983, Kodratoff & Ganascia 1986,
Kodrazoff & aL 19841. It has been implemented several times under the name of AGAPE or MAGGY.

In our example. it would find

POLYGON(u. y) & SQUARE(x & CONVEX(v. v,, : & ON(y, :) & TOUCH(y, :) & SMALLdy) &
BIG(:)
Bindings of E(" ' ',

((x - ) & (y & (x :i&(v, - ELLIPSOID) & (v -CIRCL) & (u - SQUARE) & (x - A) & (:
- B))

Body f ." -
POLYGONeu. y) & SQUARE(x) & COWVE v, v,, : & TOUCHty, : & SMAI./Uy) & BIG(:

Bindings of El' -,
((x a y) & (y: & (x-: & (v -POLYGON) & (v, SQUARE) & (u TRIANGLE) & (x D) &(y-=C})

(Y C))

-'~:.-.%
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The reader can check that El' and E,' are equivalent to E, and E,.

E' and E' contain etactly the irormation extracted from the hierarchy and the theorems which is
necessary to put the examples into SM.

For instance. in El'. the expression ' (POLYGON(u, y) " means that there is a polygon in El. and since
we have the binding (u - SQUARE). it says that this polygon is a square, which is redundant in view
of the fact that SQUARE(x) & fx,- y) says that x is a square and is the same as y. This redundancy is
not artificial when one considers the polygon in E. which is a TRIANGLE.

This exarnple shows well that, once this SM step has been performed. the generalizaton step itself
becomes trivial : we keep in the generalizaton all the bindings common to te SMized formulas and
drop all those not in common.
In other words, this SM wcdnque allows to reduce the well-known generalization rules [Nichaiski

1983, 1984] to the only "dropping condition rule" which becomes legal on SMized formulas. All the
indacuon power is in the dropping condition rule, all other rules are purely deductve. We must con-
fess that formal proof of the above statement is sil under research.

The generalizauton E, and E, is therefore

E, : POLYGON(u. y) & SQUAREx) & CONVEX(v1 , v-2, :) & TOUCH(y, :) & SMALLlyj & BIG(rj
with bindings (y*:).

In "English". rhis formula means that there are two different objects ( named y and:). y and : touch
each other. y is a small polygon. : is a big convex. and there is a square ( named x) which may be
identical to y or:.

It can be easily guessed that using theotems can lead to many diffzculies. since one enters the realm
of Theorem Proving, which is well-known for being a good source of yet unsolved problems.
In the case of SM. e is driven by the need to put the eamples into a similar form, and the usual

diffculties of Therotem Proving are somewhat smootbered ouL.
We camot formally prove this point, but the following example. taken from [Vram 19861 can at least

illus rate our laim.

L7 - Using theorems to improve generalization

Startng from two examples that have no common predicates, we show that they nevertheless have a
common generalizanon. found by using theorems that link the predicates.

Let the examples be
E, -,WAMMALIAN(A) & BRED_ ..AVIMA4A) 0

F, TAME(B) & VIVIPAROUS(B)

to which the following theorems are joined
Rl: 'ix [MAMMAUAN(x) & BRED ANIMAIx) i TAMEWx)J
Ri.: 4/x [TAMEWx) & VlVTPAROUS(x =, MAMMALIAN(x4I
R3: "lx rTAME(x za IARMLESS(x)I l,

The first step of SM is here trivial. we replace the constants by a variable x. and obtain the equivalent
examples

%
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Et' - MAMMAIJANx) & BRED ANIMAdx) [EQ(x. A)/
' - TAME(x) & VIVIPAROUS(x) [EQ(x. B))

Since the predicates have no common occurence, we consider the first ( this ordering is not signif cant,
and just follows the one in which the examples are given ) predicate of El' : MAMMALIAN. We see
that we can deduce this predicate from E2. using the rule R,. We get:

Et' - MAMMALLVA(x) & BREDARIMAL~x) [EQ(x. A)/
E " - TAMEW(x & VIWPAROUS(xj & MAMMAULAN**(x) [EQ(x. B)]

The MAMMALLAN of El' has been treated, this why it is marked by an * in Et". The one of F" is
issued from the use of theorems. this is why it is marked by *.

Using again the order in which the examples are given, the next non-marked predicate is
. -.., BRED..ANIMAL

- No rule can be applied to E," to make explicit the presence of BREDANIMAL in it.
- Nevertheless, we remark that applying the rule R, to El" uses the concerned predicate
BREDANIMAL. Checking :he effect of this application, we see that it generates the atomic formula
TAMEW( and that there is an occurence of x in E," which matches ds occurence. Therefore, we con-
clude that we must apply R, to E,".
One obtains

E" - MAMMALLAN(x) & BRED._AV1AMAL*(.£ & TAME**(x) [EQ(x. A)/
E,": TAM"E(x) & VTP.4AROUS(x) & MAMMALLAN'*(x) [EQ(x. 9)]

Now, the only un-matched predicate is VIVIPAROUS in E,'".
- No rules can be applied to E' to make its presence expliciu.

- The only ride which can be applied in E,", relative to VIVIPAROUS is R1. But. it would introduce
the atomuc formula MAMMALIAN(xj. whichg is already marched since its instances are starred.

No other rule can be applied, we star the predicate VIVIPAROUS to remember that it has already
been dealt with, obtaining :

E " - MAMMALlAN*(-x) & BREDANIMAL*(x) & TAME**(x) [EQ(x. A)d
E =- - TAME*(xj & VIVIPAROUS*(x) & VAMMALIAN (x) (EQ(x. 8)

All possible occurences have been dealt with. a complete SM is not possible. therefore the SMising
operation stops here.

Vow. the generalization step is tvial : one drops the non-common occurences. obtaining the generali-

:arton
G - TAME(x) & .WAMMALIANx)

This example shows well how potential inflmte proof loops can be easily avoided, simply because they
do not improve the SMizing state of the examples.

More generally. one can use theorem proving techniques in order to improve the degree of smlarity
detected among the examples.
Such a system is under development in our group LVrami 19871. It is not the coacatenanon of a classi-

cal theotrem prover and of generalizanon algorithms, but is rather strongly adapted to the kand of proofs
requied by Machie Learning.

As an tstance of its peculiarity ( and of its incompleteness ), it will not allow to use twice the same
tLeorem duing a given denvaton. Tis is of course a rde way to avoid intirnte loops but. as the
above example show, the corresponding incompleteness is not so wide as one could fear.

%
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2 -SYMBOLIC LER1GIN A NOISY ENVIRONMENT

In the presence of nois or polymtorplay. numeric techniques have proven thei usefulness. On this to-
pic. we want to stress two points.

I - applying mimetic tcnqe o onawy pd h nesadblt ftersls n a

2 hnue a rprnn, hybcm wornderful tool.

In the wodLwe o nt rinzzetheus itelfofnumric tcnqebttheir too early use.
71h au o ths ecton s o sov tht oe houd.and this is psil.uctosymbolic techniques as

faras ossbl beorebeiarinstocompute coefirien omintiss
Tlis avngben sid w a asoquite consciou~s of the ipracof propier cmiaonof the

coefiieim e resimly2 itpuzzled by the huge amount ofrs~ oeabout cefintcomi-
nati an th anyonedon tofind when and where they must combine. More details on this last

poin ca befoun m DuvL &Kodratoff 19861 in the case where one draws infereoce from uncertin

Recntl. ad idepelanty. Mlchalsi (fichaiski 19861 has introduced the idea of "two-dered con-
cept meaning"wihs a close parent of the ones presented here.

2. f1n% eoniinfaUimt e Analymi

Scee Aalyis vey tpicl o ahuge development of nueiatechniques and of what we shall
cal. ad ry o povtobe.a "biden" use of symbolic method.

2.1. - oman Idepndat SeneAnalysist

The i ofco= ned ormethods to go fromt the pixel lee otelvlof some descriptors (like
segmam urvaurechanes.etc Up to now. all available methods are purely numeric.

In our own tesearch group. all symbolic learning for scene analysis that has been dotte, erther str
from an alleady known symbolic description [Kodratoff & Lemerle-Loisel 19841 or from supposedly
ose-free puie descrpuons (C nt& Kodratoff 1986], [Can=a & al. 1986.
In order to fill upthe gap between real umages mid ideal ones, we are presently using anrei

method due to (Mokhgrari-an & Mackwortb 19861 which seems very promising.

This shows that wehave followed a quite classical pattern : start from real pixel unages. use numerical
techniques to get anoise-free description in terms of high level descriptors. use then symbolic methods
for interpreting teedescriptors.

This approach to Scene Analysis seems to us justafed Lf. and only if. one is supposed to simulate a
sysem nteing3,brand-new domain, and forced to discover all fotms each nune itsees them. The

methods issued from this approach should then be domain indeperadant.

2.1.1 - Domain Depiendant Scene Analysis

On the coniry. when one is wotking in a specific domain, one is always. implicitly or explicitly
our point is : too often implicitly ) using high level knowledge relative to the domain. For instance. it

some kind of curves are liely to appear. one will develop a special pixel-to-descriptor method to detect
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them. Besides, one will introduce special descriptors that will take into account some subtle differences
among those curves. that would be otherwise confused.

This is what we call "bidden use of symbolic methods".

As an example of this undesirable feature. we shall self-criticie and cite [Kodratoff & Lemerle-Loisei
19841 where, for instance, the spatial relationships TOTIERIGHT among forms ( that are represented
by circles ) are described as follows.

We define the horizontal strip associated to a circ!e ( respectively, its vertical strip ) by the portion
of the plane which is between two hormontal ( resp. vertical ) parallels tangent to the circle.
We then dene 6 different sorts of operators describing different ways to express that a circle stands
'to the right of' an other circle.
For instance. TOTHERIGHtO(A. B) says that circle A is actually directly above circle B. i.e. that the

center of A is inside the vertical strip of B. TOTHERIGHTI(A. 8) says that the center of A is inside the
hortontal strip of B. TOTHERIGHT.A. B) says that the center of A is outside both the horizonral and
"errncal strip of B. etc

io4
- 40 I b
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8v defining a strip and using it in the operator definitions, we (in a hidden symbolic way I handle the
noise relatrve to the position of circle A when its center is approximately on a vertical ( resp. horm:ontal

line. since the precision with which our operator is dened includes the width of B. On the contrary.
when the center of A is around the limit of the strip. it becomes then extremely noise sensitive since the
least difference nav make deride that it is inside or outside the strip.

This describes a partial handling of the noise. efficient in some situations. very poor in others, which is
quite tyical of bdden symbolic noise handling, and gives its limits.
Besides our own. most papers describing a specifc application fall as well ito the same trap.

We will not present here a compiete solution but simply underlne that it can be of two different kinds.

I - Classically, one can introduce mde force belief coefficients and assign a belief to each descriptor.

2 - As recommended here. one should try to keep available as much as possible of the symbolic infor-
mation. Here. ths symbolic information can be represented by de tact that some operators are po-

4,
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lymorphic and some others are not.

In our example. TOTHERIGHT(A. B) and TOTHEPJGH7T,(A. B) are polymorphic since the center of A
can be near the limit of the strip of B. in which case the slightest error may make switch from one to
the other.
TOTHERIGHTo(A. B) and TOTHEPIGHT(A. B) are not polymorphic when the two circle do not inter-

sect. they are when they intersect.

Polymotrphy would then be a better way to treat noise than mmenc coefficients since it allows to keep
more of the semantic of the domain.
In secion 2.4 below we describe how polymorphy can even be used to retain most of the information

provided by Mitchell's version spaces.

2 .- Lari ing aoise-resistant recognition functions

Once more, we want to stress the point that coefficients of some sort are not the excluive soluion to
noise handling

In this sectino. the generalization issued rom the examples will be seen as a ecog mon ftnction of
the examples.

When noise is present in a data base. it often introduces some contradictions in iL-
We sbal study now the special case where these contradictons are cmaized by the fact that sets of

positve and negative instances are not dimjoiut. This case has been studed by (Fa & Buchan- 1985].
We present here a solution, first given in [Kodraonff & AL 1986], which is completely diffeent from the

S... -.. one given by (-u & Buchanan 19851.

Suppose that one starts from a set of examples (El (E .... E,.I and couner-exmmples ( E } CE.
__ CE.).
Let G be a conjunctive generalization of IE) and let us suppose that some of the couner-examples.

say the sub-set I " 1, ae recognized by G.

We shall use the following example. inspired by plant pathology rules (Kodratof & al. 19861.
Let the .oos',e examples be
El (COLOR - RED) & (SIZE - VERY-BIG) & (TEXTURE - SOFT)
E, (COLOR , GREEN) & (SJZE - BIG) & iTEMTURE - HARD)
E, (COLOR - GREEN) & rSIZE - VERY-BIG) & (TETUE - HARD)

and let a counter-erample be :
CE, : (COLOR - RED) & SIZE - BIG) & tTEXTURE - HARD) a.

Supposing that we know that BIG and VERY-BIG can general.e to LA.RGE. a conjunctve generaii:a-
nzon of (El, El. E31 is
G : (COLOR - ANY) & (SIZE - LARGE) & (TEJURE- ANY)

This generalization is also a recognition function when one says that it recognizes 113 instances.

Unfortunately. it recogni:es also CE, which is one of its instances.

We suggest to tat this noise effect by parnmonning (Et, ... E, I in two.

Let IE') = IE ..... EI and (E"I = 1 E, ..... ,I be two disjoint subsets of {El. Lt G' and G" be
generalizatioas of I E') and ! E" I such that G' v G" does not recognize I CE' 1.

% %,
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Let (El - (Ei, E3) and (E") - Ez.
G- (COLOR - ANY) & (SIZE - VERY-8IG) & (TEXTURE ANY)
G"- E,.
The disjunction G" v G" does not recognize CE.

Therefore. we have solved our inital problem of recognition of couner-examples by a generalizaton
of the examples.
This solution. which seems to be a little artificial. allows also to favor noise-resistant generalizauim

ThiLs follows from the fact that there are usually many different paranom of (E) that will generae dis-
juacove generalizaioos reecting the counter-examples.

Let (E} - (F. E3 1 and (E') - El. This partition generates an other disjunctive generalization that
rejects CE. namely:

G' - (COLOR - GREEN) & (SIZE - LARGE) & (TEXTURE - HARD)
GG" - El.
and GG' v GG" rejects CE.

On the contrary., the last partition. (E* - (El, E2} and IE"I - E3 generates the generalization G v
E3, which of course recognme: CE.

Let IG1' ... G;1 be the set of such disjuncve generalization.

In our example. G1 - G' v G". G ' - GG' v GG".

Some of the descptom out of which the genralizatti axe made, may be more or less noise-
- resistat

One will choose in this set the generalizanon that is the most noise resistat, as shown by the two fl-
., lowing mles. Both of them rely on the fact that one can discriimate the noise reststance of the desarp-

tots.

In our example, we consider only the noise issued from descriptor polymorphy. and follow everyday in-
nton. Let us accept that there is no potymorph , between RED and GREEN. some between HARD and

SOFT. and much between BIG and VERY-BIG. It follows that we consider that the colors are not noisy.
the texture somewhat noisy, and the irej very notsy.

Rule-1 ( purely symbolic).

For each GA. consider the set of descnptos that discriminate (El against J CE). They are the importa
descriptors that cotain the features typical to JEl, and atypical to (CE).
Rule-I is then : choose the G0' whose disaimmit descriptors are the most noise-resistau.

In G,' : [(G' - (COLOR - ANY) & (SIZE - VERY-BIG) & (TEXTURE - ANY)) v (G" - FjI. G'
reject CE because c' the descrpror SIZE. and G" rejects CE because of the descriptor COLOR.
In G,' : [(GG" - (COLOR - GREEN) & (SIZE - LARGE) & (TEXT TRE - HARD)) v (GG" - E0).

GG' rejects CE because of the descriptor COLOR and G" rejects CE because of the descriptors SIZE
and TEXTURE
It follows that G.' uses more noise-resistant descriptors, since the SIZE used in GG" is helped by a
supplementary difference in TEXTURE.

Rule-I would lead us to choose G, as correct, noise-resistant. disjunctive generalization.

Rule.Z ( purely munenc).

It may happen that Rule-i is ot operative because the disjunctive generalzations use the same

0-4.
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desciptors. 19

Imagine, in our example. that TEXTURE does not appear in G,'

Let G'ad G be two disjunctive genera ins that cannot he ordered by Rule- 1.
As we have already seen in our example, different discrutmang descriptors ame issued from the

different clusters where the generalisatins come from
Call ((Ei'), [E'}) Ithe parttion of lE) whidigenerates Gi'and call ((E,'), (Ej") Ithe paittion of (E

wtnch generates G,'.
Let us call P' the descriptor. common to (&E) and (E,"1. tha discriminates (El from (CEI, and call

P7 the descriptor, common to I E, ") and I E1'), that disciminates ( E) from J CE .

For the sake of clarity, suppose further that P' is leas noisy than 7., ad that L

[..

-- (E,'( and (Ax") contain more elementssthan (E,") and IE,').

Then P' is less noisy than P7, and it is issued from a statstically mote signifcam subset of examples.

Ruie-2 is :whenever possible, choose the disjunctive generalization that mnak use of discromnant
descriptors tha are both the most statistically significant and the less ise-sensitive.

Imagine. in our example. that 7E=TU1 does not appear in G,'. the two disjunctive generalizations
would then use the same set of descipror2.

In G1'. the more nroisy descriptor, SIZE. is the one which is issued from E, and E3. It does not fit die
conditions of Rule-2.
In G; '. the Ie= noisy descriptor,. COLOR. is issued from E2 and E3. This gives us a second reasron for

- choosing G2.' as noise-resistant disjuncrn'e generalzation.

The above technique allows to combing amenc d=t about the number of examiples covered by a
dlescription, mnmeric or symbolic data about the nonse associated to each descriptor and symbolic data
about disjunctie genera1ia'nomg.

2L9 - Learning aoise-esistu strateg

When a sequence of commutative operators has to be applied to 3ctieve a goaL. it is a matter of sta-
tegy to decide in which orser the operators must be applied.
Similarly, the classical "conflict esoluon" of the System Experts is oothing but a strategical choice

about what is the operator to apply next, when several ame available.

This problem can be illusated by the following example, taken from [Bsseret & Girard 19731. It
simulates the conrols necessary when two planes are exitng an air-traffic sector. There are two
confiing flights, and the problem i to find which must change its flight profile.

One can ask as first question wether Flight-] must be lowered to exit sector. A part of the decision

tree is then:

.A

10

Rule2 i : henverpossble im isjnc~ gemali~mo tht t~ms t, e o discrm"n

[mafme.in ur xamle, hat rR dos nt apearin ,.' th tw di/uncivegenralr~aton

wou d then ........-same set of dscnp%.r .
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Flight.) lowered to exit sector?

Flight-2 steady and level? Only Flight-2 steady and level?

esno yes

Flight-] changes profile Flight.2 able to become Flight-i changes profile ...
steady and level?

yes ' o

Flight-2 changes profile Flight-I changes profile

One can also ask ftr wether Flight-2 is steady and level. A part of the corresonding decision tree is
then the following.

Flight-2 steady and level?

Flight-I lowered to exit sector? Flight-I steady and level?

yes no yes no

Flight-I changes profile Flight-I steady and level? Flight-] lowered to exit sector? ...

yes yes n

Flight-i changes profile ... Flight-2 changes proile

The choice between these two strategies, so cfaun the specialists in air-traffic control, is not due to any
noise ( and so we hope ! ), but to an estimation of the complervy f the e-ract calculations in each
case.

Form our Al point of view, noise and calculaton complexiry can well be confused.

As the above example shows, depending of the computation complexity. or noise, relanve to the
answer to Flight-2 steady and level?, it is wise or not to ask it as ars question.

Mome generally. it is quite evident that strategies should be adapted to the noise of the descriptors they
use. The less noisy descriptors should be used as early as possible. and the most noisy ones, as late as
possible.

Before discussing some solutions to the problem of the obtainment of these strateges. let us trst point
out that. again, a 'pure" symbolic problem, vmz, the obtainement of variable staegies, is one of the
solutions to noise handling.

How to obtain sets of strategies?

I - From Human Experts.

A' :, : ''' ', -','. -'. .-. .-.. ..- -. - • . . . .
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The above strategies for fights exiang a sector was directly given by the expert.
More generally, our experience shows that human exerts quite dislike providing rules, which they are

almost exclusively asked, and just love providing strategies, which they are not asked.
This is why we have devised a system called DISCIPLE [Kodratoff & Tecuct 1986a. 1986b] which is
oriented towards the learning of strategies on the conditions ia which rules must be applied.

In this system, the rules must be given, at least in an instantiated form. and conditios for their appLi-
- canons are learned through a conversanonal interaction with an expert

The system "guesses' the condition of application of a rule. then, from its data. basis. it applies the
guessed condition to its knowledge. It therefore proposes instantiated rules to the expert. When the ex-
pert accepts them. the conditions of application are confirmed and accordingly generalized, when the
expert rejects them, the condition of application are accordingly particularized.

2 - Automatic generatioa of strategies

...... .. When one generates automatically recognion functions, they can be. as done by [Michaiski & Chii-
lauski 19801, [Michalski & al 1982] used as conditoos for rule application.

In these references, it is very clear that large rules, concluding to an action from a large set of condi-
tons, are looked for. It could be very useful to look for inrermediary clusters of examples and
co.mter-examples ta= could provide imermediary rules, as for insiance done by [Fu & Buchanan 19851.
In this way. which merges automatic generatioa of recognition functions and conceptual ciustenring, it

* could be quite possible to generate automatically sets of possible strategies that coul be used to be
adapted to the noise condition in ewh pamcular application.

24- Polymorphic Version Space

The noton of Version Space has been introduced by T. MAitchell rMzchell 1982] who descrtbes it as a
set of possible generalization szates. Let us recall briely Mitchell's results.

One generalizes from the examples, and the subset of "maxmally specifc generalizations" obtained by
generalizanon fron the examples is called the S-seL. In this paper, we shall use the extensaon of
*.Mitchell's ideas due to Utgoff [UtgoT 19861, and suppose that intermediary concepts ( called '"bias" by
Utgoff ) are always available.
One particularizes from counter-examples. and the subset of "maximally general generalizations" ob-

taied fiom the counter-exemples is called the G-set.

In order to illustrate it. let us use Lhe following example, from [Mitchell, Urgoff & Banerji 19831.

FUNC

POLl' TRANS
/' p

TRIG ...

SIN COS

If the exam ples are instances of SIN and COS. then the S-set is made of all the sons of TRIG b.v foi-

V....,.]
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lowing Mitchell. while Utgo)f allows us to suppose that there is alwavs some intermediary concept t let
us call it here : SIN v COS ) that makes the S-set nearer to the eamples. ,V.1

If the counter-examples are instances of POLY. then the G-set is made of the son: of TRANS.
'I..

A first order logic presentation of ,Mitchell's ideas wl allow us to discuss their generalizano to noisy
daa

Let P be the first order logic predicates that expresses the success of action done is the situation A,.
V

In the above example, imagine that one is concerned with rymbolic integration, and that one disposes V
of a set of possible operators, among them, an operator of integration by parts .,S

OP,. f Udv ijv - du. .
4

Then .A, - [Functional part of dv - SIN1., and P [Success of ntegranon by Parrs y appltag OP.J.
For he sake of brevitv, we leave impiicit in the rest rhis section that the Integration by Parts is always
done by using OP,. V.

Let (A, be the set of the sxcuanou that unure success during the uairg phase. then each A; is such
that A, -' P. Therefore. each A,. is a sufficient conditon for the validity of P.

.... The S-iet ( with the bias extenmon ) is therefore a set of suftciemn condinons for a success.

Functional part of dv - SIN Ls a sqfficzent condition for the integration by parr to succeed. Funcaonal
part of J - COS also.

Let (AIl be the set of the amoor that tnsue ftadure dung the ormnng phase. and let ICAiJ the corn-
plementary set to (Al I The set jCA: I is tLe G-iet for the value of u in the Integration by Part.

Otherwise staed. gjverA IA}, one tnes to find an other subset ICAI} such that, for each i.
A,, - -CAi

Siace each A, Ls a failure. it is such that

It ivially follows A, , -P.
P C ,

Therefore. eact CA, is a oecessary condition for the validity of P. The G-set is therefore a set of neces-
-- sary condinoons for a success.

Consider he above hierarchy. Since POLY and TRVS ire ,wo airferent sons o e 'he same father, one
knows that. in weil-behaved :axonomies. thev e_,cluae eacn other. i.e. that POLY -, -,TRANS.

Since POLY is a counter-ex.ample to the success o'f he integranon byv parrs with Functional part of ,v
- POLY. the G-ser of :he integration by part is Functional part of dv - TRAVS and its sons.

In greater deatls, one can see !hat
!F'Ancnonal part of dv - POLY1 o -. success of Integration iv Parts!. t

Because of the taxonomy. )ne has
POLCY 'Zo -T, INS. .

Using the classical fact that
A - B s eowivalent to -A v B.

one has I
[Functional part of dv - TRANXS7 v -(sccess of Integration by Parsi .. r

%d
% '
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which is equivalent to
[Functional parr of dv TRANS/ v -[success of Integration by Parrs

and. therefore, to
[success of Integration by Parrsl =v (Functional part of dv - TRANSI.

The interest of ths small theoretization lies in the act that it gives the main two hypothesis under
which Vernion Spaces are tractable.

On the one hand. one must have -- A = A. i.e.. one must not use pnnnoaastic logics. This restriction
is not so strong in practice.

Nevertheless. the following example will show tbat one must be careful while using negation a a rea-
somag step.

* Y Suppose that one ,s working with red. green, and blue colors.
Let r be a particular red color. 1ten a possible negation of this red color. -r may be a parricular

green coor. say g. Now, possrtble egae ions of g are of course r. but also any other color which not
green, for example a paricuiar blue. b.
In that case. -- r may take the value b instead of r as one could expect.
One has :o suppose that a special care is taken for Tracking the origin of the negations when double

negation is applied. in order ro insure :he validirt of classical logics.

On the other hand. in order to brwld the G-set. one must find counter-examples. A,. that exclude some
other predicates. i.e. such that A. 4 --CA1.
In this case concept polymorphy, Le. the fact that concepts ame not always disjoint, will prevent an

easy bulding of the G-set.

We shall illustrate now our claims with concepts of colors, which cdearty are partially polymorphic.
For instance, red and rose are polymorphic. because some of "heir instances may be confused. but red

and green are not.

The colors are then not represented by a unique point in a state space, but by a set of the posible
instances of each color.

One will have to construct a taxonomic-like tree. similar to the one of the Version Space. Many more
links. indicating a partial polymorphy will have to be added to the taxonomy. Coellfcients can be asso-
ciated to each Link. indicating how much important the polymorpby is. We insist that the existence of
coefficiens. amd the way they are combined, is not the main issue. On the contary, the main issue is to
keep track of the successive steps of reasonig, in order to be able to provide erplananon to the user.
This last point has been explained in [Duval & Kodratotf 19861 in the context of uncertain reasocing.

Consider the following taxonomy for colors, and the associated links of polymorphy. No horrmontal link
between two concepts means no polymorphic links,
Strong polymorphy is marked by a mere coniusion of concepts as brown below. Medium polymorphy ts"

marked by a horizontal line of - • Small potlmorphy is marked by a horizontal line of . dk stands for
dark, gt for light. .

o-p



color

primary secondary

blue <-...> red yellow <....> orange green purple

A k* lgt dk <***> tgt tgt dA Igt dk <***> Igt dk < gt

(brown)

. ,;z tya Ige <ar dk
(chestnut) (brown)

It is generally understood that, for instance, primary and secondary colors cannot be Confissed, i-e. thatr
primary - -secondary. This is why there is no hori:ontal line between primary and secondary.
Nevertheless. polynorphy of their sons will induce some ( implicit ) polymorphy between them.

When a coumter-example is given. one will have to check which predicaxes = be truly considered as
behaving classically, i.e. they have no polymorphy with the counter-example predicate. One will have
also to keep track of partial polymorphy that tells that they am partially only rejected by the cotnter-
example.

Suppose that the above taxonomy is used to allow or reject some action P. and that the color light red
is a counter-example : light red * -P.
The construction of the G-set will proceed as follows.

Let us first suppose that "first generation" polymorphy only is considered.
Light red is a primary color, polymorphic with some secondary colors, namely purple light and orange
light. It follows that the G-set contains all secondary colors, except these two. as in the figure below.

€ .... . . color 1

dk Igt dAl g dgkt ". dk let A k lt,

{chestnun (brown).,

Let us now take also into account the fact that "second generation polymorphy' can also be important.
Light red is also feebly polymorphic with dark red which, in turn, is polymorphic with dark purple and

dark orange.
77Terefore. dark purple and dark orange must be also exrcluded of the G.set. but with much less

strength than their light counterparts.

N
N
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Now. and only now, some way of combining coefficienrs will be necessary to have a correct modelling
of the necessary knowledge.

In Mitchell's Verson Space. the G-set is a one-dimeononal eamty since one point. the tode where it
starts, is neces sary.

If no combination of polymorpby is allowed. a two dimensional G-set must be used. it order to tell
which predicates am excluded from it. as seen in the above figure.
If one allows combinations of polymorphy coefficients. a three dimensional G-set becomes necessary.

The third dimension tells the intensity with which the predicates belong to the G-set.

The same kind of work can be done for the the S-set. Ooe will obtain in a similar way a three dimen-
sional Version Space.

One knows that the S-set and the 0-set must coincide in order to obtain hat we call here :necessary5
- and sufficient conditions for the application of the rules.

In the case of polymorphic Version Spac. the same is true. but the coi-cence can be approximate
only, aWd must hold between complicated shapes.

In general the G-set nd the S-set will not couicide but simply itersecL In most cases. ore will have
even nothing but inforinamao about the likeliness of this intersection.

Therefore. the global information about aose or polymorptry will mot be totally contained m belief
coefficint only.

Numerc coefficients are of course necessary to convey the informanon about the likeliess of the
immecuon. but one must be aware that it would be wrong to forget the essential imiormamon conveyed
by our extension of the Ver n Spaces. which can be described as follows.
Let P, be a predicate belonging to the G-set only, P, be a predicate belonging to the S-set only, and
" P,, PJ be the set of predicates that are sons of P, and fathers of P'.
Then. th exa generalization state is unknown. but belongs to [P:, PJ.
Tlis last sentence is a way of descaibing uncertaity by a purely symbolic method which could never

have been imagmed without Mitcbel's noise-tree Version Spaces.

CONCLUSION

In a recent paper. we claim that Al is not a sub-deld of Computer Science. but a new Science by itself
[Kodratoff 1986b], independant from Lts parents Matxhematics, Logics. and of course Computer Scaence.
We shall simply recall here our main argument Al has its self well-idenmied field of research.'

namely th defituon. measurement and a.licaton of expiananons given in the own language ot its
user. In other words, while all other Science provide explananow ia their own language ( very often
they am even able to become rather esoteric . the topic of Ad is to reach a point where It can provide
explanations in the own language of the user of Al.

We do not want to argue this point here. but would rather ay to show that the rest of this paper, in a

perhaps indirect way. tnes to help acheving this goal. Even if the reader disagree with our position that
Al ts the science of explannoos. he can stil discuss our point that a better detimnon of genraLizaotio

section 1 of this paper ) and a systematic use of symbolic techniques section 2 of this paper are
good tools to achieve a better enxpticariveness of Ad systems.

% Grb....r.rM~I
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About section 1. one may well wonder what its content may have to do with explicableness. since it
looks like theoretical discussions about a formal definitoa of generalization. Of course, one can argue ',
in a very abstract way that better definitions always lead to better undervandabiliry. In the case of gen- P.
eralizatioa. it is by itself a kind of explanation of whry are the examples sutiaa. Refining generalization
may beip to remember some hidden common feature which can be an explanation. Counter-,examples
will be necessary to decide what is and what is not an explanation.

Recall the examples of section 1.7, E, - MAMMALAN(A) & BREDANIMALJA). E. - TAME(B) &
VIVIPAROUS(B. from which we could find the generalizanon G - T4Efz) & MAMMALANtx).
Suppose now that a counter-example to G is CE - DAVGEROUS(LION-l). From it, we can now rell

that eventhough ( implicitly ) present in both examples. MMLMA.IAN and T.ALME are not the good
explanation of the link between the examples. One has to use R,: Vx [TAMEx) 1o HARMLESStx)J, and

- ~some knowledge of the kind 'ix (DANGEROUS(x) - --HARMLESSi'x)j. to be able to explain that this
examples are about harmless animals. Without introducing T4ME in El. by the use of Ri. one would

~ .. have been unable to find this explanation.

Our refinements to generalization are not explaniatory by themselves, but they may allow to start expla-
naZtory processes.

About section 2. its content is much more evidently linked to explicableness. Symbolic techmiques;
keep the kind of normiatian that provides expianations while minenc ones ( and especially coeffcient
combinations ) do not.

As an example. consider the LL-C system whinch is capable of carrying out formal integrations
[Mitchell. Utgoff & Banerji 19831. As seen in section 2.4. the learning part of LEX as been trying to
make identical the G-set and the S-set oaf ' u ' and ' dv ' in integration by part. Suppose that it suc-

- . ceeded by finding that these common G-and-S-sets are " polynomial 'for' u ' and' rrigonometric 'for

Suppose now the system is asked to integrate 3x cos x dx and that it chooses to integrate by parts
with u = 3x and dv = cos x dx.
It is. at least in principle, capable of eirplanatons in the sense that. it is capable. when asked the que.s-

non: "Why have you chosen this way of integrating?", of giving the answer: 'Because I had the option
of choosing a ' u ' which is a polynomial and a "dv ' whose isnctonal pan is a trgonometrinc func.
ton.

The symbolic handling of knowledge about necessary and sufficient conditions makes possible this ,

kind of explanation. ,
'.,'

.Az a kind of counter-erample, imagine that it could be qute possible to achieve also very, good results %

in symbolic integration by asserting coefficients to the possible ' u " and ' dv ' in integration by part.
and learning by increasing the coefficents in case of success, and decreasing them in case of failure. Yo
erplanations can been given from this kind of learning.
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J. A. 3GADY, M. KOVIDER (Mars 2986) (12 Pces)

267 D'LG EEM--II TITC .11;TVN IN ?RCABILISTIC ALGOZT. S
M. SANTHA (Mars 2986) (25 pages)

268 METHODE DE :TRANSFOPAA.7ON DE PPOGRAMILS 3E 3URS.ArL- ARLI 7G-^O
ARPLIE A4 LA ??OGAYMTvACNV LOGI;UE F

- - N. AZIBI, Y. KODRATOFF (Ma-rs 1.986) (36 paces) L'

*269 ON TH EFC CF ;0:N OPERATION ON ?ELATION STOZES
a .GA.RD:Y, C. PUEC- (AvyX :986) (33 races)

2710 AT!AC OGA4IG7CN$ES AFPU71-TO SOF7'.'AEVELOYN

AN' APPRCACT! 3ASE5 2 ^ NPIN . A NOL

2 7: 4N0;~z CN S 3.-'E RAPH.S acs

272 N1-:.4.VGO OU 35 IA= !E'7 7 .ECT 3ON 4R'S T4.700
'a 0. .'.AS3SE. (Aura 936 '4 paces

273:OVRIN TTE ;t IE FA 3RA P. 3Y 3F FP' PPSJI EN0TH1
VAMA?, I. ?CTA. 3EF-4 r.4vr: :3)(7 ages)

.~.77N7.~7 OOYC:E .4 77727 5'F~'?37a4?7e7.



27 A NOTE CN CIC.FNEANO NEEDY SETS

P. FRAISSE (Mai 2986) (20 pages)

276 0 ,r-YCZES A4ND THEIR APPLICA ClON FORP -ANL'NA FAPHS
P. FR.4ISSE (M1ai 1386) (26 paces)

277 DEGREE 57D4 E CYCLES OE LONGUEU1R VONNEE
D. AA, E. FLANINL, 1. FOURNIER, A. GEF.M-A (Mai 1986) (14 paces)

273 APPZLICATIONS O F REIUSFCO TYE ANALYSIS OF PARALLELr SYSTEMS

A. j0EA. FIKL(Mai :9~)(25 racesJ

279 R4NCYCLISM, IN C7WATAL- PDOS' t S GRPAPH~S
D. AAAR . RNE, A. GERMA (Mai 1986) (20 vages)

280DIFUSON 'IFOR4IO~V .A,11 7N EEAU 7lSn!?-3UE
APPLICATION,1 .A LEXOLUS:ON MT'L
j. C. . 0:3 Ma 9836) (27 :=aes) ft

28:1 FAULT TOLERANT RCUTI.VGS --. XAUTZ AND VS D ?- JV E-RK
N. H303NC, C. ?EYRAT (M-ai 1936).(13 pages)

252 PANCYCLISM INT Z, - aE GPHS
FTllRI~ ?'FOURNITHR, A. 02RY4V 'Mais 9368) (2:' pages)

283 O8jECT ORI-7EYTErD TOOLS FOR THE DESIGN, OF H13H ZE' :I:
IMPE.FACES :THE AZY FOR ADAPTABiLIY

S. KURSENTY (Juin I386) (17 pces)

284 C2.VNECT7'IT7Y OF IMASE AND --IH :'103AI H8
.V. HCP4OBIONC, ,-. ?E:r.%AT (J7 uin 19M') (25 races)

^3 RE:Z'IVESS PROCFS FCR ABSTPACT AV'v' S-

G. 3E.VVOT (J uin 2986) (33 paces)

.V. . SE(.Tun 2388) '27aaes)

287 ?~~ZAPHS SVCHV :S,: E'TE?Y .7v0O 52055E AP-E .74A75 ' EO2S YL :
V. HCO3CN, 0. ?T "Juir 296)K ages)

-3ON .4 7O'?CY EASURPE

.J. E'.~7E? 3. EAD, C7 IIE? 33 K r'afes.

4 L.4 1.,,Z



293 DISCIPLE': AN IMPEACTIVE APRACH TO LZAPN2.'G
APPRENTICE SYS5TEMS
Y. KCDRA TOF7, G. TrCUiC. (Aozt 1986) (40 pages)

294 TWO NOTES ON GRAPHS AND SECURITY
C. DELORME, J. J. QUISQUATER (Aot~t 1986) (8 paces)

295 AUTOMATIC ROOFS BY NDCININ THEORIES WI'YCUT CONSZ;UCI=CRS
J. P. JOUAAVNAUD, E. KOUNALIS (Sever-bre 2986) (28 page--)

236 W.- LANGUAGES OF PETRI NETS AND LOGICAL SENTENCES
E. PELZ (Septembre 1'786) (29 paces)

297 CLOSURE PROPERT=E OF DETERINISTIC PETRI NETS
E. ?ELZ (Sertembre 21986) (18d pages)

298 LARGE --4ULT-2'OLZR4NT 12.'TERCONNEC2'ION NET71ORKS7
J. C. BERM?3OND, N. HOMOBONO, C. PEnRAT (Serram.re 1986) (22 --aes

299 cO'NCEPTUm-AL DISTANCE-BASE5 .'EARN-VG
-. Y. KCDFATOFF, C. TEUI(Septembrve :386) (27 pages)

300 AN EXTENSIO,-N OF FR:EEr CHOICE NETS TO FIFO
A. F.V.S', A. CHOQUET (Sertemb!'e !986) (7 vac'es)

30 Y TMoD52RBE ET AUTOMATES FVWIS
J. BEAUQUIERZ. (Sentebre 1986) (27 paces)

302 SERPE :AN EXTEWSIBLE STRUCW:RE- 7OR ANVALYSIS OF PTINT
P. FRAISSE, C. JOHNEN, N. TE'1ES (Senrem-bre 2986) (14 pag7es)

303 NUMBER OF .4RCS, CYCLES AND FATHS INV 3-ARTITE DIORAPH5
M. MASOUSSAK'S, Y. MANOUSSAIS (Ocrobre 2986) (37 paces)

304 MINZ74ALISM7, J-,JST1FrlCAT:ON AND *VrNTOI1T17 DE7DUCTIVE
'ATAB'ASES
N. 3.7-0.4-T, R. KULL (Oc'rc~re 36)(52 races)

305 CCNCErP2'Lr IRRC;AL ASCENDING ASICA02
N. 3E*VYJ,!u, 7. KOOPA TO = 'Oc--obre 7386) (29 paces)

306 jiN .4 COC:RE.7CY -V ~
J. 3EAU-UIE-R, 3. 3ERARD, L. THFCNIE (c-;ore 16)16 p ages)

'E O TRANSITIONS 31EV 5TRUCTURES

A. -C'0-re'2

- ~ ~ ~ ~ 2 - .-. c. ess



Re , ort n< pace 11-4 LI,~S:
;7arart n'

311 A LOGIC FOR DATA AND KN7OWLEDGE BASES1
N. SPYRATOS, C. LECLUSE (Novembre 1986) (27 pages)

.312 IS Al A SUB-FIELD OF COMPUTER SCIENCE ? OR A! IS1 THE SCIE .VCE OF
EXPLANATIONS
Y. KODP.ATOFF (No'.embre 1986) (21 pages)

313 CONSEQUENCIES OF THE DECIDABILITY OF THE R4CHA'.BILITY INV FTRI- .E7
J. L. LAMBERT (Novembre 1986) (50 paces)

31L4 ISOMORTp.SMS OF CAvLEY MULTIGRAPHS OF DEGREEZ 4 ON FIE ABELIAN
GROUPS
C. DELORME, 0. FAVARON, M. MAHiEC (Novembre 1986) (15 pages)

33A COMPILER FOR CONDITIONAL T.-q RET TIN=G S217=-AYS
S. JKAPLAN (04cembre 1986) (22 pag'es)

316 S.MEPLIE71 G C0OJOITIONAL TEMRM REWRITIG SYST-EVES UNIFIC,'AT.7N,j
TEMINrATI'oN AND CONFLUENCE

a.. -~S. KAPLA17 (Dembre 1986) (48 pages)

3:7 SOME NEW COMPOUND GRAPHS
C. DELORME, Ji. J. QUISOVTATER (Ddoembre- 1986) (19 nages)

318 Q.UATRE ARTICES SUR L 'ETAT DE L 'ART EN
-AxPRENTIrSSAGE S7V3CLIQUE AUTfMAT7QUE-

FOUR PAPERS ON THE STATE,, OF THE ART IN
AC2ELEARNING

* 7. XODRATOFF, Y. GRANER (Dilcembre 1986) (56 pages)

319 ANALySING NETS 3Y7THE INIVARIANT METHOD
0. MEAVI, J. 7AUTHERIN (D4cemrbre 1986) (40 :7a-es)
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